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A widely used equation for fitting the porosity depen-
dence of experimentally measured tensile modulus data
is the exponential relation proposed by Spriggs in 1961
[1]:

Er(φ) = exp(−bφ), (1)

where

Er ≡ E

E0
(2)

is the relative or reduced tensile modulus, with E being
the effective tensile modulus of the porous ceramics
and E0 the tensile modulus of the matrix phase (dense,
e.g., pore-free ceramic material), b is a fit parameter
and φ the volume fraction of voids (porosity). Recently
it has been shown [2] that the Spriggs relation, Equation
1, although usually considered to be purely empirical,
can be derived from a simple functional equation of the
form [3]

Er(φ) ≡ Er(φ1 + φ2) = Er(φ1) · Er(φ2). (3)

This functional equation is set up on the basis of a virtual
experiment dividing the total porosity present, φ, into
two fractions, φ1 and φ2, not necessarily small [2].

Defining an intrinsic tensile modulus [E]

[E] ≡ lim
φ→0

Er − 1

φ
(4)

Equation 1 can be rewritten in the form

Er(φ) = exp([E]φ), (5)

which can easily be seen to reduce to the linear relation

Er = 1 + [E] · φ (6)

for small porosity values φ (micromechanical dilute
approximation). For ceramics with isolated spherical
pores in a matrix with a Poisson ratio of ν0 = 0.2, the
intrinsic tensile modulus is [E] = −2, cf. [2] and [4].
With this value Equation 6 becomes

Er = 1 − 2φ, (7)

which is identical to the result of the self-consistent
scheme approximation [5]. Analogously, in the context
of suspension viscosity, an intrinsic viscosity [η] can
be defined as

[η] ≡ lim
φ→0

ηr − 1

φS
(8)

(with the relative or reduced shear viscosity ηr, and the
solids volume fraction φS) and an exponential relation
of the Arrhenius type [6, 7] can be derived via a func-
tional equation approach [2]:

ηr(φS) = exp([η]φS) (9)

(with positive [η]). In a similar way as Equation 5, also
this relation reduces to the linear relation

η

η0
= 1 + [η] · φS, (10)

in the case of small solids volume fractions φS. This
is the Jeffery-Einstein equation [8, 9] for the effec-
tive viscosity of dilute suspensions with rigid parti-
cles of spherical or spheroidal shape. In particular, for
rigid sphere suspensions the intrinsic viscosity adopts
Einstein’s value of 2.5, which can be considered as a
benchmark value.

Now both Equations 5 and 9 suffer from the serious
drawback, recognized as early as 1962 by Hasselman
[10], that for large φ or φS (i.e., φ → 1 or φS → 1,
i.e., 100% porosity or 100% solids volume fraction),
respectively, they do not attain the respective values
of zero or infintity as required. In order to circumvent
this drawback, Hasselman, based on a previous work
of Hashin [11] proposed a relation of the form

Er = 1 − φ

1 − Bφ
, (11)

with B being a constant, which can in principle be
calculated from theory [10, 11]. However, when B is
treated as a fit parameter, another complication arises,
which will be discussed below. Note also that the draw-
back mentioned above does not exist for power-law re-
lations of the type

Er(φ) = (1 − φ)−[E] (12)
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and

ηr(φS) = (1 − φS)−[η], (13)

respectively [2, 12], which contain the (correct version
of the) Coble-Kingery relation for the relative tensile
modulus of ceramics with isolated sphercial pores in a
ν0 = 0.2 matrix material [4, 13],

Er = (1 − φ)2, (14)

and the Roscoe-Brinkman relation for the relative vis-
cosity of suspensions [14–16]

ηr = (1 − φS)−2.5, (15)

respectively, as special cases. Both Equations 14 and 15
follow from the differential scheme approximation [4,
5, 14–16], but can alternatively be derived via a func-
tional equation approach [2]. Another alternative way
to avoid the above mentioned drawback is implicitly
included in Mooney’s paper on suspension viscosity
[17]. The widely used Mooney relation for suspension
viscosity, also derived by via a functional equation, is

ηr(φS) = exp

(
[η]

φS

1 − φS

φSC

)
. (16)

It can be easily be verified that the Mooney relation sat-
isfies both requirements for the limit behavior at small
and large solids volume fractions. In viscosity context
the critical solids volume fraction φSC can be inter-
preted as the maximum packing fraction, at which the
suspension looses flowability (locking phenomenon).
In the case of randomly close packed (rcp) monosized
spheres φSC should be around 0.64, i.e., 64 vol% (the
classical value [18] is 63.7%, while newer research [19]
favors 64.4 vol% for the maximum packing fraction of
monosized spheres in rcp arrangement).

Now we apply Mooney’s argumentation to the elas-
ticity context in order to derive a Mooney-type relation
for the relative tensile modulus of porous ceramics. For
this purpose we modify the simple functional equation
given above (Equation 3) as follows: While in the vir-
tual experiment mentioned above the total porosity φ

is decomposed into the partial volume fractions φ1 and
φ2,

φ = V1 + V2

V0 + V1 + V2
= V1

V0 + V1 + V2
+ V2

V0 + V1 + V2

= φ1 + φ2, (17)

note that this decomposition into partial volume frac-
tions is only a virtual one. However, when the fractions
are added in a real experiment, account must be taken
of the fact that the first fraction of pores is added to a
dense material, where the second fraction of pores is
not yet present,

φ12 = V1

V0 + V1
= φ1

1 − φ2
, (18)

i.e., in order to obtain a partial volume fraction of φ1
after mixing, the fraction to be added to the dense mate-
rial (i.e., before the second fraction is present) must be
larger than φ1, by a factor of (1 − φ2)−1. In principle,
the same reasoning applies to the second fraction with

φ21 = V2

V0 + V2
= φ2

1 − φ1
. (19)

Following Mooney’s approach, what holds for the first
fraction must hold also for the second fraction, and thus
the corresponding functional equation is

Er(φ) ≡ Er(φ1 + φ2) = Er(φ12) · Er(φ21). (20)

It can easily be verified that this functional equation has
the solution

Er(φ) = exp

(
[E]

φ

1 − φ

)
. (21)

Additionally, following Mooney, we adopt the analogue
of Mooney’s assumption that the space available for the
addition of the second fraction is effectively reduced
by the presence of the first fraction, i.e., in order to
obtain a partial volume fraction of φ1 after mixing, the
fraction to be added to the dense material (i.e., before
the second fraction is present) must be larger than φ1, by
a factor (1 − Cφ1)−1 with C > 1, i.e. by more than only
(1 − φ1)−1 above. In physical terms, the inverse of C
can be interpreted as a critical porosity, i.e., φC ≡ C−1

has the properties of a percolation threshold. With this
additional assumption the volume fractions to be added
are

φ′
12 = φ1(

1 − φ2

φC

) . (22)

and

φ′
21 = φ2(

1 − φ1

φC

) . (23)

The corresponding functional equation is

Er(φ) ≡ Er(φ1 + φ2) = Er(φ
′
12) · Er(φ

′
21), (24)

and its solution is

Er(φ) = exp

(
[E]

φ(
1 − φ

φC

)
)

. (25)

This is the relation for the relative tensile modulus, de-
rived in analogy to the Mooney relation for suspension
viscosity. In contrast to the Spriggs relation, Equation
1 or 5, and the Hasselman relation, Equation 11 (with
φC ≡ B−1), this relation predicts a tensile modulus ap-
proaching zero when φ → φC, corresponding to phys-
ical experience. Similar to the Spriggs relation and in
contrast to the Hasselman relation, the limit behavior
for φ → 0 is predicted correctly by Equation 25. Sim-
ilar to the Hasselman relation and in contrast to the

3214



Spriggs relation, Equation 25 allows for the possible oc-
currence of a percolation threshold. For ceramics with
spherical pores the intrinsic tensile modulus should be
[E] = −2. When used as a two-parameter fit equation,
a deviation from this value may be interpreted as being
due to deviations of the pore shape from sphericity.
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(submitted).
3. C . B L A T T E R, “Analysis I” (Springer-Verlag, Berlin, 1974) p. 101.
4. W. P A B S T and E . G R E G O R O V Á, Int. J. Nonlinear Mech.
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